The Gauss-Markov Theorem: OLS is a BLUE Estimator

The Sample Mean is a BLUE estimator

Recall our analysis of the Sample Mean estimator (of a population mean): We looked at linear unbiased estimators (LUEs):

$$\beta_1 Y_1 + \beta_2 Y_2 + ... + \beta_n Y_n$$
, where $\sum_{i=1}^n \beta_i = 1$.

To find the Best Linear Unbiased Estimator (BLUE), we looked for the particular set of coefficients $\{\beta_i\}$, which minimized the variance within the group/class of LUEs. That amounted to solving the optimization problem:

min
$$Var(\sum \beta_i Y_i) = \sigma^2 \sum \beta_i^2$$
 subject to $\sum_{i=1}^n \beta_i = 1$.

This is a constrained optimization problem, with solution $\beta_i = \frac{1}{n}$ for all i... which is the Sample Mean: $\overline{Y} = \frac{1}{n} \sum Y_i$. So the Sample Mean is a BLUE Estimator.

What about OLS?

Now assume SLR.1-SLR.5 and turn to the challenge of finding the BLUE estimator of the parameter β_1 of the linear model: $Y = \beta_0 + \beta_1 X + U$. (We will focus only on estimating the slope parameter here.)

The analysis will be conditioned on a particular sample of the x_i 's, and so each of the randomly determined values of the dependent variable will be defined by:

SLR.1:
$$Y_i = \beta_0 + \beta_1 x_i + U_i$$
,

where

SLR.4:
$$E(Y_i | x_i) = \beta_0 + \beta_1 x_i$$
 since $E(U_i | x_i) = 0$, and
SLR.5: $Var(Y_i) = Var(U_i) = \sigma^2$ (homoskedasticity).

We want to estimate β_1 .

Consider the following general linear estimator (since we are conditioning on the x_i 's, the estimator will be linear in the Y_i 's): $b_0 + \sum b_i Y_i$

We require the estimator to be unbiased:

$$E\left[b_0 + \sum b_i Y\right] = b_0 + E\left[\sum b_i [\beta_0 + \beta_1 x_i + U_i]\right]$$
$$= b_0 + \beta_0 \sum b_i + \beta_1 \sum b_i x_i + \sum b_i E(U_i \mid x_i).$$

But by SLR.4, the conditional means of the U_i 's are all 0, and so we require that:

$$b_0 + \beta_0 \sum b_i + \beta_1 \sum b_i x_i \equiv \beta_1$$
, for all parameter values β_0 and β_1 .

This requires that:

$$b_0 = 0$$
, $\sum b_i = 0$ and $\sum b_i x_i = 1$.

Solution: So as in our approach to the Sample Mean analysis, to find the BLUE estimator of β_1 , we want to solve the following constrained optimization problem:

min
$$Var\left[\sum b_i Y_i\right] = \sigma^2 \sum b_i^2$$
 subject to $\sum b_i = 0$ and $\sum b_i x_i = 1$.

Note the similarity to the Sample Mean constrained optimization problem:

min
$$Var(\sum b_i Y_i) = \sigma^2 \sum b_i^2$$
 subject to $\sum_{i=1}^n b_i = 1$.

(The objective functions are the same; the constraints differ in number and are slightly different.)

Gauss-Markov Theorem: OLS = BLUE

OLS is a BLUE estimator: OLS = BLUE

Quick Proof (skip to the result on the next page if Lagragian multipliers are new to you):

Use the Lagrangian multiplier method to solve the constrained optimization problem:

$$L = \sigma^2 \sum b_i^2 + \lambda_1 \sum b_i + \lambda_2 (1 - \sum b_i x_i)$$

FOCs:

$$\frac{\partial}{\partial b_i} L = 2b_i \sigma^2 + \lambda_1 - \lambda_2 x_i = 0, \text{ for } i = 1, \dots, n, \text{ and}$$
$$\frac{\partial}{\partial \lambda_1} L = \sum b_i = 0 \text{ and } \frac{\partial}{\partial \lambda_2} L = 1 - \sum b_i x_i = 0$$

Averaging the first condition over the i's, we have:

$$2\sigma^2\overline{b} + \lambda_1 - \lambda_2\overline{x} = 0 \iff \lambda_1 = \lambda_2\overline{x} - 2\sigma^2\overline{b}$$
, and since $\overline{b} = \frac{1}{n}\sum b_i = 0$.

 $\lambda_1 = \lambda_2 \overline{x} \,.$

Multiplying the first condition by b_i and summing, we have:

$$\begin{split} \sum \left[2\sigma^2 b_i^2 + \lambda_i b_i - \lambda_2 b_i x_i \right] &= 2\sigma^2 \sum \left[b_i^2 \right] + \lambda_1 \sum \left[b_i \right] - \lambda_2 \sum \left[b_i x_i \right] \\ &= 2\sigma^2 \sum \left[b_i^2 \right] - \lambda_2 = 0 \text{, and so:} \\ \lambda_2 &= 2\sigma^2 \sum b_i^2 \text{.} \\ \text{And so:} \quad \lambda_1 &= \lambda_2 \overline{x} = 2\sigma^2 \overline{x} \sum b_i^2 \\ \text{So:} \quad b_i &= \frac{1}{2\sigma^2} \left[\lambda_2 x_i - \lambda_1 \right] = \frac{1}{2\sigma^2} \left[2\sigma^2 x_i \sum b_j^2 - 2\sigma^2 \overline{x} \sum b_j^2 \right] = (x_i - \overline{x}) \sum b_j^2 \text{.} \\ \text{Then } b_i &= b_j \frac{(x_i - \overline{x})}{(x_j - \overline{x})} \leftrightarrow b_i (x_i - \overline{x}) = b_j \frac{(x_i - \overline{x})^2}{(x_j - \overline{x})} \text{, and so} \\ \sum b_i (x_i - \overline{x}) &= \sum b_i x_i - \overline{x} \sum b_i = \sum b_i x_i = 1. \text{ And so, } \frac{b_j}{(x_j - \overline{x})} \sum (x_i - \overline{x})^2 = 1... \text{ and} \\ b_j &= \frac{(x_j - \overline{x})}{\sum (x_i - \overline{x})^2}. \end{split}$$

Gauss-Markov Theorem: OLS = BLUE

Gauss-Markov Theorem:

So given SLR.1-5, the BLUE estimator of
$$\beta_1$$
 is $B_1 = \frac{\sum (x_i - \overline{x})Y_i}{\sum (x_j - \overline{x})^2}$.

One last step:
$$\frac{\sum (x_i - \overline{x})\overline{Y}}{\sum (x_j - \overline{x})^2} = \overline{Y} \frac{\sum (x_i - \overline{x})}{\sum (x_j - \overline{x})^2} = \overline{Y} \frac{(n\overline{x} - n\overline{x})}{\sum (x_j - \overline{x})^2} = 0$$
, and so
$$B_1 = \frac{\sum (x_i - \overline{x})(Y_i - \overline{Y})}{\sum (x_j - \overline{x})^2} \dots$$
 the OLS estimator!

For the given sample, the estimate will be:
$$\hat{\beta}_i = \sum \frac{(x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

OLS is BLUE!