The Gauss-Markov Theorem: OLS is a BLUE Estimator

The Sample Mean is a BLUE estimator

Recall our analysis of the Sample Mean estimator (of a population mean):
We looked at linear unbiased estimators (LUEs):

$$
\beta_{1} Y_{1}+\beta_{2} Y_{2}+\ldots+\beta_{n} Y_{n} \text {, where } \sum_{i=1}^{n} \beta_{i}=1 \text {. }
$$

To find the Best Linear Unbiased Estimator (BLUE), we looked for the particular set of coefficients $\left\{\beta_{i}\right\}$, which minimized the variance within the group/class of LUEs. That amounted to solving the optimization problem:

$$
\min \operatorname{Var}\left(\sum \beta_{i} Y_{i}\right)=\sigma^{2} \sum \beta_{i}^{2} \text { subject to } \sum_{i=1}^{n} \beta_{i}=1 .
$$

This is a constrained optimization problem, with solution $\beta_{i}=\frac{1}{n}$ for all i... which is the Sample Mean: $\bar{Y}=\frac{1}{n} \sum Y_{i}$. So the Sample Mean is a BLUE Estimator.

Gauss-Markov Theorem: OLS \equiv BLUE

What about OLS?

Now assume SLR.1-SLR. 5 and turn to the challenge of finding the BLUE estimator of the parameter β_{1} of the linear model: $Y=\beta_{0}+\beta_{1} X+U$. (We will focus only on estimating the slope parameter here.)

The analysis will be conditioned on a particular sample of the x_{i} 's, and so each of the randomly determined values of the dependent variable will be defined by:

$$
\text { SLR.1: } Y_{i}=\beta_{0}+\beta_{1} x_{i}+U_{i}, \text {, }
$$

where
SLR.4: $E\left(Y_{i} \mid x_{i}\right)=\beta_{0}+\beta_{1} x_{i}$ since $E\left(U_{i} \mid x_{i}\right)=0$, and
SLR.5: $\operatorname{Var}\left(Y_{i}\right)=\operatorname{Var}\left(U_{i}\right)=\sigma^{2}$ (homoskedasticity).

We want to estimate β_{1}.

Consider the following general linear estimator (since we are conditioning on the $x_{i}{ }^{\prime} s$, the estimator will be linear in the $Y_{i}{ }^{\prime} s$): $b_{0}+\sum b_{i} Y_{i}$

We require the estimator to be unbiased:

$$
\begin{aligned}
& E\left[b_{0}+\sum b_{i} Y\right]=b_{0}+E\left[\sum b_{i}\left[\beta_{0}+\beta_{1} x_{i}+U_{i}\right]\right] \\
& =b_{0}+\beta_{0} \sum b_{i}+\beta_{1} \sum b_{i} x_{i}+\sum b_{i} E\left(U_{i} \mid x_{i}\right) .
\end{aligned}
$$

But by SLR.4, the conditional means of the U_{i} ' s are all 0 , and so we require that:

$$
b_{0}+\beta_{0} \sum b_{i}+\beta_{1} \sum b_{i} x_{i} \equiv \beta_{1} \text {, for all parameter values } \beta_{0} \text { and } \beta_{1} \text {. }
$$

This requires that:

$$
b_{0}=0, \sum b_{i}=0 \text { and } \sum b_{i} x_{i}=1 .
$$

Solution: So as in our approach to the Sample Mean analysis, to find the BLUE estimator of β_{1}, we want to solve the following constrained optimization problem:

$$
\min \operatorname{Var}\left[\sum b_{i} Y_{i}\right]=\sigma^{2} \sum b_{i}^{2} \text { subject to } \sum b_{i}=0 \text { and } \sum b_{i} x_{i}=1 .
$$

Note the similarity to the Sample Mean constrained optimization problem:

$$
\min \operatorname{Var}\left(\sum b_{i} Y_{i}\right)=\sigma^{2} \sum b_{i}^{2} \text { subject to } \sum_{i=1}^{n} b_{i}=1
$$

(The objective functions are the same; the constraints differ in number and are slightly different.)

Gauss-Markov Theorem: $O L S \equiv B L U E$
OLS is a BLUE estimator: $O L S \equiv B L U E$
Quick Proof (skip to the result on the next page if Lagragian multipliers are new to you):

Use the Lagrangian multiplier method to solve the constrained optimization problem:
$L=\sigma^{2} \sum b_{i}^{2}+\lambda_{1} \sum b_{i}+\lambda_{2}\left(1-\sum b_{i} x_{i}\right)$

FOCs:
$\frac{\partial}{\partial b_{i}} L=2 b_{i} \sigma^{2}+\lambda_{1}-\lambda_{2} x_{i}=0$, for $\mathrm{i}=1, \ldots, \mathrm{n}$, and
$\frac{\partial}{\partial \lambda_{1}} L=\sum b_{i}=0$ and $\frac{\partial}{\partial \lambda_{2}} L=1-\sum b_{i} x_{i}=0$
Averaging the first condition over the i's, we have:
$2 \sigma^{2} \bar{b}+\lambda_{1}-\lambda_{2} \bar{x}=0 \leftrightarrow \lambda_{1}=\lambda_{2} \bar{x}-2 \sigma^{2} \bar{b}$, and since $\bar{b}=\frac{1}{n} \sum b_{i}=0$,
$\lambda_{1}=\lambda_{2} \bar{x}$.
Multiplying the first condition by b_{i} and summing, we have:
$\sum\left[2 \sigma^{2} b_{i}^{2}+\lambda_{1} b_{i}-\lambda_{2} b_{i} x_{i}\right]=2 \sigma^{2} \sum\left[b_{i}^{2}\right]+\lambda_{1} \sum\left[b_{i}\right]-\lambda_{2} \sum\left[b_{i} x_{i}\right]$
$=2 \sigma^{2} \sum\left[b_{i}^{2}\right]-\lambda_{2}=0$, and so:
$\lambda_{2}=2 \sigma^{2} \sum b_{i}{ }^{2}$.
And so: $\lambda_{1}=\lambda_{2} \bar{x}=2 \sigma^{2} \bar{x} \sum b_{i}{ }^{2}$
So: $b_{i}=\frac{1}{2 \sigma^{2}}\left[\lambda_{2} x_{i}-\lambda_{1}\right]=\frac{1}{2 \sigma^{2}}\left[2 \sigma^{2} x_{i} \sum b_{j}{ }^{2}-2 \sigma^{2} \bar{x} \sum b_{j}{ }^{2}\right]=\left(x_{i}-\bar{x}\right) \sum b_{j}{ }^{2}$.
Then $b_{i}=b_{j} \frac{\left(x_{i}-\bar{x}\right)}{\left(x_{j}-\bar{x}\right)} \leftrightarrow b_{i}\left(x_{i}-\bar{x}\right)=b_{j} \frac{\left(x_{i}-\bar{x}\right)^{2}}{\left(x_{j}-\bar{x}\right)}$, and so
$\sum b_{i}\left(x_{i}-\bar{x}\right)=\sum b_{i} x_{i}-\bar{x} \sum b_{i}=\sum b_{i} x_{i}=1$. And so, $\frac{b_{j}}{\left(x_{j}-\bar{x}\right)} \sum\left(x_{i}-\bar{x}\right)^{2}=1 \ldots$ and
$b_{j}=\frac{\left(x_{j}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$.

Gauss-Markov Theorem: OLS \equiv BLUE

Gauss-Markov Theorem:

So given SLR.1-5, the BLUE estimator of β_{1} is $B_{1}=\frac{\sum\left(x_{i}-\bar{x}\right) Y_{i}}{\sum\left(x_{j}-\bar{x}\right)^{2}}$.

One last step: $\frac{\sum\left(x_{i}-\bar{x}\right) \bar{Y}}{\sum\left(x_{j}-\bar{x}\right)^{2}}=\bar{Y} \frac{\sum\left(x_{i}-\bar{x}\right)}{\sum\left(x_{j}-\bar{x}\right)^{2}}=\bar{Y} \frac{(n \bar{x}-n \bar{x})}{\sum\left(x_{j}-\bar{x}\right)^{2}}=0$, and so $B_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(x_{j}-\bar{x}\right)^{2}} \ldots$ the OLS estimator!

For the given sample, the estimate will be: $\hat{\beta}_{i}=\sum \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$.

OLS is BLUE!

