
 
 

 

The Gauss-Markov Theorem:  OLS is a BLUE Estimator 
 
The Sample Mean is a BLUE estimator 
Recall our analysis of the Sample Mean estimator (of a population mean): 

We looked at linear unbiased estimators (LUEs): 
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To find the Best Linear Unbiased Estimator (BLUE), we looked for the particular set of 
coefficients { }iβ , which minimized the variance within the group/class of LUEs.  That 
amounted to solving the optimization problem: 
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This is a constrained optimization problem, with solution 1
i n

β =  for all i… which is the Sample 

Mean:  1
iY Y

n
= ∑ .  So the Sample Mean is a BLUE Estimator. 
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What about OLS? 
Now assume SLR.1-SLR.5 and turn to the challenge of finding the BLUE estimator of the 
parameter 1β  of the linear model:  0 1Y X Uβ β= + + .  (We will focus only on estimating the 
slope parameter here.) 

The analysis will be conditioned on a particular sample of the 'ix s , and so each of the randomly 
determined values of the dependent variable will be defined by:   

SLR.1:  0 1i i iY x Uβ β= + + , , 

where  

SLR.4:  0 1( | )i i iE Y x xβ β= +  since ( | ) 0i iE U x = , and  

SLR.5:  2( ) ( )i iVar Y Var U σ= =  (homoskedasticity). 

 

We want to estimate 1β .   

Consider the following general linear estimator (since we are conditioning on the 'ix s , the 
estimator will be linear in the 'iY s ):  0 i ib b Y+∑    

We require the estimator to be unbiased: 

0 0 0 1[ ]i i i iE b b Y b E b x Uβ β   + = + + +   ∑ ∑    

0 0 1 ( | )i i i i i ib b b x b E U xβ β= + + +∑ ∑ ∑ . 

But by SLR.4, the conditional means of the 'iU s  are all 0, and so we require that: 

0 0 1 1i i ib b b xβ β β+ + ≡∑ ∑ ,  for all parameter values 0 1andβ β  . 

This requires that: 

0 0b = , 0ib =∑  and 1i ib x =∑ .   

 

Solution:  So as in our approach to the Sample Mean analysis, to find the BLUE estimator of 1β , 
we want to solve the following constrained optimization problem: 

min 2 2
i i iVar b Y bσ  = ∑ ∑  subject to 0ib =∑  and 1i ib x =∑ . 

Note the similarity to the Sample Mean constrained optimization problem: 

min 22( )i ii
Var b Y bσ=∑ ∑  subject to 
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(The objective functions are the same; the constraints differ in number and are slightly different.) 
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OLS is a BLUE estimator:  OLS BLUE≡  

Quick Proof  (skip to the result on the next page if Lagragian multipliers are new to you): 

 

Use the Lagrangian multiplier method to solve the constrained optimization problem: 

 
2 2

1 2 (1 )i i i iL b b b xσ λ λ= + + −∑ ∑ ∑  

 

FOCs: 
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Averaging the first condition over the i’s, we have: 

2 2
1 2 1 22 0 2b x x bσ λ λ λ λ σ+ − = ↔ = −  , and since 1 0ib b

n
= =∑ , 

1 2 xλ λ= . 

Multiplying the first condition by ib  and summing, we have: 

[ ] [ ]2 2 2 2
1 2 1 22 2i i i i i i i ib b b x b b b xσ λ λ σ λ λ   + − = + −   ∑ ∑ ∑ ∑   
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22 0ibσ λ = − = ∑ , and so: 

2 2
2 2 ibλ σ= ∑ . 

And so:  2 2
1 2 2 ix x bλ λ σ= = ∑  

So:  [ ] 2 2 2 2 2
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Gauss-Markov Theorem:   
 

So given SLR.1-5, the BLUE estimator of 1β  is 1 2
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One last step:  2 2 2
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… the OLS estimator! 

 

For the given sample, the estimate will be: 2
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OLS is BLUE! 
 


